Troy Laboratories Pty Ltd Chemwatch: **5398-56**Version No: **5.1** Safety Data Sheet according to Work Health and Safety Regulations (Hazardous Chemicals) 2023 and ADG requirements # Chemwatch Hazard Alert Code: 2 Issue Date: **10/03/2023**Print Date: **31/03/2025**L.GHS.AUS.EN.E # SECTION 1 Identification of the substance / mixture and of the company / undertaking | Product Identifier | Product Identifier | | |-------------------------------|---------------------|--| | Product name | Troy Laxapet Gel | | | Chemical Name | Not Applicable | | | Synonyms | APVMA number: 51226 | | | Chemical formula | Not Applicable | | | Other means of identification | Not Available | | # Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses A laxative and aid in the elimination of ingested hair in Dogs and Cats. To be used as directed on product label. # Details of the manufacturer or supplier of the safety data sheet | Registered company name | Troy Laboratories Pty Ltd | | |-------------------------|--|--| | Address | 37 Glendenning Road Glendenning NSW 2761 Australia | | | Telephone | 02 8808 3600 | | | Fax | 02 9677 9300 | | | Website | www.Troylab.com.au | | | Email | admin@troylab.com.au | | # **Emergency telephone number** | Association / Organisation | Ixom Emergency Response Service | | |-------------------------------------|---------------------------------|--| | Emergency telephone number(s) | 1800 033 111 (24 hours) | | | Other emergency telephone number(s) | Not Available | | #### **SECTION 2 Hazards identification** # Classification of the substance or mixture | Poisons Schedule | Not Applicable | | |--------------------|---|--| | Classification [1] | ensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 2A, Sensitisation (Respiratory) Category 1 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | # Label elements Hazard pictogram(s) Signal word Danger Chemwatch: 5398-56 Page 2 of 14 Issue Date: 10/03/2023 Version No: 5.1 Print Date: 31/03/2025 **Troy Laxapet Gel** # Hazard statement(s) | H317 | May cause an allergic skin reaction. | | |------|--|--| | H319 | Causes serious eye irritation. | | | H334 | May cause allergy or asthma symptoms or breathing difficulties if inhaled. | | # Precautionary statement(s) Prevention | P261 | Avoid breathing mist/vapours/spray. | | |------|--|--| | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | | P284 | [In case of inadequate ventilation] wear respiratory protection. | | | P264 | Wash all exposed external body areas thoroughly after handling. | | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | # Precautionary statement(s) Response | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | |----------------|--|--| | P342+P311 | experiencing respiratory symptoms: Call a POISON CENTER/doctor/physician/first aider. | | | P302+P352 | ON SKIN: Wash with plenty of water and soap. | | | P305+P351+P338 | N EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | P333+P313 | f skin irritation or rash occurs: Get medical advice/attention. | | | P337+P313 | f eye irritation persists: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | # Precautionary statement(s) Storage Not Applicable # Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. # **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures ### **Mixtures** | CAS No | %[weight] | Name | |---------------|---|--| | 8002-48-0 | 30-60 | malt extract | | 92045-77-7. | 10-30 | petroleum jelly snow white | | 8012-95-1. | 10-30 | paraffin oils | | 9000-01-5 | 1-10 | gum arabic | | 532-32-1 | <1 | sodium benzoate | | Not Available | balance | Ingredients determined not to be hazardous | | Legend: | Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available | | # **SECTION 4 First aid measures** | Description of first aid mea | asures | |------------------------------|---| | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. | Chemwatch: 5398-56 Page 3 of 14 Issue Date: 10/03/2023 Version No: 5.1 Print Date: 31/03/2025 # **Troy Laxapet Gel** | | Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | |-----------|---| | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. - Heavy and persistent skin contamination over many years may lead to dysplastic changes. Pre-existing skin disorders may be aggravated by exposure to this - In general, emesis induction is unnecessary with high viscosity, low volatility products, i.e. most oils and greases. - High pressure accidental injection through the skin should be assessed for possible incision, irrigation and/or debridement. NOTE: Injuries may not seem serious at first, but within a few hours tissue may become swollen, discoloured and extremely painful with extensive subcutaneous necrosis. Product may be forced through considerable distances along tissue planes. #### **SECTION 5 Firefighting measures** #### **Extinguishing media** - Foam. - Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. #### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may ### Advice for firefighters | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
 | | |-----------------------|--|--| | Fire/Explosion Hazard | Combustible. Slight fire hazard when exposed to heat or flame. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). May emit acrid smoke. Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes. CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire. | | | HAZCHEM | Not Applicable | | # **SECTION 6 Accidental release measures** ### Personal precautions, protective equipment and emergency procedures See section 8 # **Environmental precautions** See section 12 Chemwatch: 5398-56 Page 4 of 14 Issue Date: 10/03/2023 Version No: 5.1 Frint Date: 31/03/2025 **Troy Laxapet Gel** | | Slippery when spilt. | |--------------|---| | | ▶ Clean up all spills immediately. | | | ▶ Avoid contact with skin and eyes. | | Minor Spills | Wear impervious gloves and safety goggles. | | | ► Trowel up/scrape up. | | | Place spilled material in clean, dry, sealed container. | | | ► Flush spill area with water. | | | ► Clear area of personnel and move upwind. | | | Alert Fire Brigade and tell them location and nature of hazard. | | | Wear breathing apparatus plus protective gloves. | | | Prevent, by any means available, spillage from entering drains or water course. | | | ▶ Stop leak if safe to do so. | | | ▶ Contain spill with sand, earth or vermiculite. | | Major Spills | Collect recoverable product into labelled containers for recycling. | | | Neutralise/decontaminate residue (see Section 13 for specific agent). | | | Collect solid residues and seal in labelled drums for disposal. | | | Wash area and prevent runoff into drains. | | | After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. | | | If contamination of drains or waterways occurs, advise emergency services. | | | Slippery when spilt. | Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** Safe handling #### Precautions for safe handling - ▶ Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - ▶ DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use. - Use good occupational work practice. - $\blacksquare \ \, \text{Observe manufacturer's storage and handling recommendations contained within this SDS}. \\$ - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. # Other information - Store in original containers. - Keep containers securely sealed. - ▶ No smoking, naked lights or ignition sources. - tion Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storage and handling recommendations contained within this SDS. # Conditions for safe storage, including any incompatibilities # Suitable container - Metal can or drum - Packaging as recommended by manufacturer. - ► Check all containers are clearly labelled and free from leaks. # Storage incompatibility - · CARE: Water in contact with heated material may cause foaming or a steam explosion with possible severe burns from wide scattering of hot material. Resultant overflow of containers may result in fire. - · Oil leaks in a pressurized circuit may result in a fine flammable spray (the lower flammability limit for oil mist is reached for a concentration of about 45 g/m3 - · Autoignition temperatures may be significantly lower under particular conditions (slow oxidation on finely divided materials.. - Avoid reaction with oxidising agents # **SECTION 8 Exposure controls / personal protection** #### **Control parameters** # Occupational Exposure Limits (OEL) # INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------|---------------|---------------------------|---------|---------------|---------------|---------------| | Australia Exposure
Standards | paraffin oils | Oil mist, refined mineral | 5 mg/m3 | Not Available | Not Available | Not Available | Chemwatch: **5398-56** Pa Troy Laxapet Gel Page 5 of 14 Issue Date: 10/03/2023 Print Date: 31/03/2025 | Ingredient | Original IDLH | Revised IDLH | |----------------------------|---------------|---------------| | malt extract | Not Available | Not Available | | petroleum jelly snow white | Not Available | Not Available | | paraffin oils | 2,500 mg/m3 | Not Available | | gum arabic | Not Available | Not Available | | sodium benzoate | Not Available | Not Available | #### MATERIAL DATA # **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. # Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|----------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s (50-
100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-
200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-
500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-
2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the
square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Individual protection measures, such as personal protective equipment # Eye and face protection - Safety glasses with side shields. - ▶ Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. # Skin protection #### See Hand protection below #### Hands/feet protection - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber Chemwatch: 5398-56 Page 6 of 14 Issue Date: 10/03/2023 Version No: 5.1 Print Date: 31/03/2025 **Troy Laxapet Gel** | Body protection | See Other protection below | |------------------|---| | Other protection | When handling hot or molten liquids, wear trousers or overalls outside of boots, to avoid spills entering boots. Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapour exposure. CAUTION: Vapours may be irritating. Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit. | #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. | Required Minimum Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |------------------------------------|----------------------|----------------------|-------------------------| | up to 10 x ES | A-AUS P2 | - | A-PAPR-AUS / Class 1 P2 | | up to 50 x ES | - | A-AUS / Class 1 P2 | - | | up to 100 x ES | - | A-2 P2 | A-PAPR-2 P2 ^ | #### ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) For molten materials: 76a-p() # **SECTION 9 Physical and chemical properties** | Information on basic physical and chemical properties | | | | |---|---|--|--| | Appearance | Shiny brown homogenous gel with characteristic of caramel odour; does not mix with water. | | | | | | | | | | Relative density (Water = | | | | Physical state | Gel | Relative density (Water = 1) | Not Available | |---|----------------|---|----------------| | Odour | Not Available | Partition coefficient n-
octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Applicable | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Applicable | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Heat of Combustion (kJ/g) | Not Available | Ignition Distance (cm) | Not Available | | Flame Height (cm) | Not Available | Flame Duration (s) | Not Available | | Enclosed Space Ignition
Time Equivalent (s/m3) | Not Available | Enclosed Space Ignition
Deflagration Density
(g/m3) | Not Available | # **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |--------------------|---| | Chemical stability | ► Unstable in the presence of incompatible materials. | **Troy Laxapet Gel** Issue Date: **10/03/2023**Print Date: **31/03/2025** | | Product is considered stable.Hazardous polymerisation will not occur. | | |------------------------------------|--|--| | Possibility of hazardous reactions | See section 7 | | | Conditions to avoid | See section 7 | | | Incompatible materials | See section 7 | | | Hazardous decomposition products | See section 5 | | # **SECTION 11 Toxicological information** | nformation on toxicologic | al effects | | |---|---|--| | a) Acute Toxicity | Based on available data, the classification criteria are not met. | | | b) Skin Irritation/Corrosion | Based on available data, the classification criteria are not met. | | | c) Serious Eye
Damage/Irritation | There is sufficient evidence to classify this material as eye damaging or irritating | | | d) Respiratory or Skin
sensitisation | There is sufficient evidence to classify this material as sensitising to skin or the respiratory system | | | e) Mutagenicity | Based on available data, the classification criteria are not met. | | | f) Carcinogenicity | Based on available data, the classification criteria are not met. | | | g) Reproductivity | Based on available data, the classification criteria are not met. | | | h) STOT - Single Exposure | Based on available data, the classification criteria are not met. | | | i) STOT - Repeated
Exposure | Based on available data, the classification criteria are not met. | | | j) Aspiration Hazard | Based on available data, the classification criteria are not met. | | | Inhaled | Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to
the health of the individual. Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. | | | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. | | | Skin Contact | Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Open cuts, abraded or irritated skin should not be exposed to this material The material may accentuate any pre-existing dermatitis condition Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | | | Еуе | Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | | Chronic | Practical evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a substantial number of individuals at a greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or | | #### **Troy Laxapet Gel** Issue Date: 10/03/2023 Print Date: 31/03/2025 respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyperresponsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Principal route of exposure is by skin contact; lesser exposures include inhalation of fumes from hot oils, oil mists or droplets. Prolonged contact with mineral oils carries with it the risk of skin conditions such as oil folliculitis, eczematous dermatitis, pigmentation of the face (melanosis) and warts on the sole of the foot (plantar warts). With highly refined mineral oils no appreciable systemic effects appear to result through skin absorption. Exposure to oil mists frequently elicits respiratory conditions, such as asthma; the provoking agent is probably an additive. High oil mist concentrations may produce lipoid pneumonia although clinical evidence is equivocal. In animals exposed to concentrations of 100 mg/m3 oil mist, for periods of 12 to 26 months, the activity of lung and serum alkaline phosphatase enzyme was raised; 5 mg/m3 oil mist did not produce this response. These enzyme changes are sensitive early indicators of lung damage. Workers exposed to vapours of mineral oil and kerosene for 5 to 35 years showed an increased prevalence of slight basal lung fibrosis. | Troy Laxapet Gel | TOXICITY | IRRITATION | | |----------------------------|--|--|--| | | Not Available | Not Available | | | malt autra et | TOXICITY | IRRITATION | | | malt extract | Not Available | Not Available | | | | TOXICITY | IRRITATION | | | petroleum jelly snow white | Dermal (rabbit) LD50: >2000 mg/kg ^[1] | Eye: no adverse effect observed (not irritating) ^[1] | | | | Oral (Rat) LD50: >5000 mg/kg ^[1] | Skin: no adverse effect observed (not irritating) ^[1] | | | | TOXICITY | IRRITATION | | | | Inhalation (Rat) LC50: 2062 ppm4h ^[2] | Eye (Rodent - rabbit): 100mg/1H - Mild | | | paraffin oils | Oral (Mouse) LD50; 22000 mg/kg ^[2] | Eye (Rodent - rabbit): 500mg - Moderate | | | | | Skin (Rodent - guinea pig): 100mg/24H - Mild | | | | | Skin (Rodent - rabbit): 100mg/24H - Mild | | | | TOXICITY | IRRITATION | | | gum arabic | Oral (Rabbit) LD50; 8000 mg/kg ^[2] | Eye (Rodent - rabbit): 36mg/5H - Severe | | | | TOXICITY | IRRITATION | | | sodium benzoate | Dermal (rabbit) LD50: >2000 mg/kg ^[1] | Eye: adverse effect observed (irritating) ^[1] | | | | Inhalation (Rat) LC50: >12.2 mg/L4h ^[1] | Skin (Human): 0.5%/20M | | | | Oral (Rat) LD50: 4070 mg/kg ^[2] | Skin (Human): 10%/1H | | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | | | | | Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | PETROLEUM JELLY SNOW WHITE | Tumorigenic effects. * Pioneer Brand SDS White and Yellow petroleum Jellies | |----------------------------|---| | PARAFFIN OILS | Equivocal tumorigen by RTECS criteria Paraffin oil (boiling in the kerosene boiling range) can pose certain health hazards, especially if it is inhaled or ingested and also due to repeated or prolonged skin exposure. Inhalation of paraffin oil can irritate the respiratory tract, and cause cough, shortness of breath, and occasionally, lead to hydrocarbon pneumonitis. On the other hand, prolonged skin exposure to this oil can cause skin irritation, which can lead to contact dermatitis, especially in individuals who already have skin disorders or diseases. Ingestion of paraffin oil can cause upset of the intestinal tract. Paraffin oil, which has not been highly refined, is often considered as a carcinogen or cancer causing agent. Therefore, adequate precaution is required, while using
paraffin oil. Ideally, liquid paraffin oil should be stored in a cool and well-ventilated place n a tightly closed container. As some paraffin oil is highly inflammable, be sure to keep it away from any source of heat or ignition and also out of direct sunlight. | | GUM ARABIC | Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which | Troy Laxapet Gel No significant acute toxicological data identified in literature search. Page 9 of 14 Issue Date: 10/03/2023 Print Date: 31/03/2025 increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens). Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure. Gum arabic is a technical name for Acacia Senegal Gum. Gum arabic is comprised of various sugars and glucuronic acid residues in a long chain of galactosyl units with branched oligosaccharides. Gum arabic is generally recognized as safe as a direct food additives. Toxicity data on gum arabic indicates little or no acute, short-term, or subchronic toxicity. Gum arabic is negative in several genotoxicity assays, is not a reproductive or developmental toxin, and is not carcinogenic when given intraperitoneally or orally. Clinical testing indicated some evidence of skin sensitization with gum arabic. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. NOTE: Oral doses of 8-10g may cause nausea and vomiting, though tolerance in human is 50 g/day. Use in food limited to 0.1%. [ICI] For benzoates: Acute toxicity: Benzyl alcohol, benzoic acid and its sodium and potassium salt can be considered as a single category regarding human health, as they are all rapidly metabolised and excreted via a common pathway within 24 hrs. Systemic toxic effects of similar nature (e.g. liver, kidney) were observed. However with benzoic acid and its salts toxic effects are seen at higher doses than with benzyl alcohol. The compounds exhibit low acute toxicity as for the oral and dermal route. The LD50 values are > 2000 mg/kg bw except for benzyl alcohol which needs to be considered as harmful by the oral route in view of an oral LD50 of 1610 mg/kg bw. The 4 hrs inhalation exposure of benzyl alcohol or benzoic acid at 4 and 12 mg/l as aerosol/dust respectively gave no mortality, showing low acute toxicity by inhalation for these compounds. Benzoic acid and benzyl alcohol are slightly irritating to the skin, while sodium benzoate was not skin irritating. No data are available for potassium benzoate but it is also expected not to be skin irritating. Benzoic acid and benzyl alcohol are irritating to the eye and sodium benzoate was only slightly irritating to the eye. No data are available for potassium benzoate but it is expected also to be only slightly irritating to the eye. Sensitisation: The available studies for benzoic acid gave no indication for a sensitising effect in animals, however occasionally very low positive reactions were recorded with humans (dermatological patients) in patch tests. The same occurs for sodium benzoate. It has been suggested that the very low positive reactions are non-immunologic contact urticaria. Benzyl alcohol gave positive and negative results in animals. Benzyl alcohol also demonstrated a maximum incidence of sensitization of only 1% in human patch testing. Over several decades no sensitization with these compounds has been seen among workers. Repeat dose toxicity: For benzoic acid repeated dose oral toxicity studies give a NOAEL of 800 mg/kg/day. For the salts values > 1000 mg/kg/day are obtained. At higher doses increased mortality, reduced weight gain, liver and kidney effects were For benzyl alcohol the long-term studies indicate a NOAEL > 400 mg/kg bw/d for rats and > 200 mg/kg bw/d for mice. At higher doses effects on bodyweights, lesions in the brains, thymus, skeletal muscle and kidney were observed. It should be taken into account that administration in these studies was by gavage route, at which saturation of metabolic pathways is likely to occur. Mutagenicity: All chemicals showed no mutagenic activity in *in vitro* Ames tests. Various results were obtained with other *in vitro* genotoxicity assays. Sodium benzoate and benzyl alcohol showed no genotoxicity *in vivo*. While some mixed and/or equivocal *in vitro* chromosomal/chromatid responses have been observed, no genotoxicity was observed in the *in vivo* cytogenetic, micronucleus, or other assays. The weight of the evidence of the *in vitro* and *in vivo* genotoxicity data indicates that these chemicals are not mutagenic or clastogenic. They also are not carcinogenic in long-term carcinogenicity studies. In a 4-generation study with benzoic acid no effects on reproduction were seen (NOAEL: 750 mg/kg). No compound related effects on reproductive organs (gross and histopathology examination) could be found in the (sub) chronic studies in rats and mice with benzyl acetate, benzyl alcohol, benzaldehyde, sodium benzoate and supports a non-reprotoxic potential of these compounds. In addition, data from reprotoxicity studies on benzyl acetate (NOAEL >2000 mg/kg bw/d; rats and mice) and benzaldehyde (tested only up to 5 mg/kg bw; rats) support the non-reprotoxicity of benzyl alcohol and benzoic acid and its salts. Developmental toxicity: In rats for sodium benzoate dosed via food during the entire gestation developmental effects occurred only in the presence of marked maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg bw). only in the presence of marked maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg bw). For hamster (NOEL: 300 mg/kg bw), rabbit (NOEL: 250 mg/kg bw) and mice (CD-1 mice, NOEL: 175 mg/kg bw) no higher doses (all by gavage) were tested and no maternal toxicity was observed. For benzyl alcohol: NOAEL= 550 mg/kg bw (gavage; CD-1 mice). LOAEL = 750 mg/kg bw (gavage mice). In this study maternal toxicity was observed e.g. increased mortality, reduced body weight and clinical toxicology. Benzyl acetate: NOEL = 500 mg/kg bw (gavage rats). No maternal toxicity was observed. #### MALT EXTRACT & GUM ARABIC SODIUM BENZOATE Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. # PETROLEUM JELLY SNOW WHITE & PARAFFIN OILS The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives; The potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since: - $\boldsymbol{\cdot}$ The adverse effects of these materials are associated with undesirable components, and - \cdot The levels of the undesirable components are inversely related to the degree of processing; - Distillate base oils receiving the same degree or extent of processing will have similar toxicities; - \cdot The potential toxicity of *residual base oils* is independent of the degree of processing the oil receives. - · The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing. Issue Date: 10/03/2023 Print Date: 31/03/2025 The degree of refining influences the carcinogenic potential of the oils. Whereas mild acid / earth refining processes are inadequate to substantially reduce the carcinogenic potential of lubricant base oils, hydrotreatment and / or solvent extraction methods can yield oils with no carcinogenic potential. Unrefined and mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of
hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity. Mutagenicity and carcinogenicity testing of residual oils has been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size. Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil s mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables (e.g. IP346 assay), both characteristics that are directly related to the degree/conditions of processing Skin irritating is not significant (CONCAWE) based on 14 tests on 10 CASs from the OLBO class (Other Lubricant Base Oils). Each study lasted for 24 hours, a period of time 6 times longer than the duration recommended by the OECD method). Eye irritation is not significant according to experimental data (CONCAWE studies) based on 9 "in vivo" tests on 7 CASs from the OLBO class(Other Lubricant Base Oils). Sensitisation: The substance does not cause the sensitization of the respiratory tract or of the skin. (CONCAWE studies based on 14 tests on 11 CASs from the OLBO class(Other Lubricant Base Oils)) Germ cell mutagenicity: The tests performed within the 'in vivo" studies regarding gene mutation at mice micronuclei indicated negative results (CONCAWE studies. AMES tests had negative results in 7 studies performed on 4 CASs from the OLBO class(Other Lubricant Base Oils)). Reproduction toxicity: Reproduction / development toxicity monitoring according to OECD 421 or 422 methods. CONCAWE tests gave negative results in oral gavage studies. Pre-birth studies regarding toxicity in the unborn foetus development process showed a maternal LOAEL (Lowest Observed Adverse Effect Level) of 125 mg/kg body/day, based on dermal irritation and a NOAEL (No Observable Adverse Effect Level) of 2000 mg/kg body/day, which shows that the substance is not toxic for reproduction. STOT (toxicity on specific target organs) - repeated exposure: Studies with short term repeated doses (28-day test) on rabbit skin indicated the NOAEL value of 1000 mg/kg. NOAEL for inhalation, local effects > 280 mg/m3 and for systemic effects NOAEL > 980 mg/m3. Sub-chronic toxicity 90-day study Dermal: NOAEL > 2000 mg/kg (CONCAWE studies). Repeat dose toxicity: NOAEL for heavy paraffinic distillate aromatic extract could not be identified and is less than 125 mg/kg/day when administered Inhalation The NOAEL for lung changes associated with oil deposition in the lungs was 220 mg/m3. As no systemic toxicity was observed, the overall NOAEL for systemic effects was > 980 mg/m3. In a 90 day subchronic dermal study, the administration of Light paraffinic distillate solvent extract had an adverse effect on survivability, body weights, organ weights (particularly the liver and thymus), and variety of haematology and serum chemistry parameters in exposed animals. Histopathological changes which were treatment-related were most prominent in the adrenals, bone marrow, kidneys, liver, lymph nodes, skin, stomach, and thymus. Based on the results of this study, the NOAEL for the test material is less than 30 mg/kg/day. Toxicity to reproduction: Mineral oil (a white mineral oil) caused no reproductive or developmental toxicity with 1 mL/kg/day (i.e., 1000 mg/kg/day) in an OECD 421 guideline study, but did cause mild to moderate skin irritation. Therefore, the reproductive/developmental NOAEL for this study is =1000 mg/kg/day and no LOAEL was determined. Developmental toxicity, teratogenicity: Heavy paraffinic distillate furfural extract produced maternal, reproductive and foetal toxicity. Maternal toxicity was exhibited as vaginal discharge (dose-related), body weight decrease, reduction in thymus weight and increase in liver weight (125 mg/kg/day and higher) and aberrant haematology and serum chemistry (125 and/or 500 mg/kg/day). Evidence of potential reproductive effects was shown by an increased number of dams with resorptions and intrauterine death. Distillate aromatic extract (DAE) was developmentally toxic regardless of exposure duration as indicated by increased resorptions and decreased foetal body weights. Furthermore, when exposures were increased to 1000 mg/kg/day and given only during gestation days 10 through 12, cleft palate and ossification delays were observed. Cleft palate was considered to indicate a potential teratogenic effect of DAE. The following Oil Industry Note (OIN) has been applied: OIN 8 - The classifications as a reproductive toxicant category 2; H361d (Suspected of damaging the unborn child) and specific target organ toxicant category 1; H372 (Causes damage to organs through prolonged or repeated exposure) need not apply if the substance is not classified as carcinogenic Toxicokinetics of lubricant base oils has been examined in rodents. Absorption of other lubricant base oils across the small intestine is related to carbon chain length; hydrocarbons with smaller chain length are more readily absorbed than hydrocarbons with a longer chain length. The majority of an oral dose of mineral hydrocarbon is not absorbed and is excreted unchanged in the faeces. Distribution of mineral hydrocarbons following absorption has been observed in liver, fat, kidney, brain and spleen. Excretion of absorbed mineral hydrocarbons occurs via the faeces and urine. Based on the pharmacokinetic parameters and disposition profiles, the data indicate inherent strain differences in the total systemic exposure (~4 fold greater systemic dose in F344 vs SD rats), rate of metabolism, and hepatic and lymph node retention of C26H52, which may be associated with the different strain sensitivities to the formation of liver granulomas and MLN histiocytosis. Highly and Severely Refined Distillate Base Oils Acute toxicity: Multiple studies of the acute toxicity of highly & severely refined base oils have been reported. Irrespective of the crude source or the method or extent of processing, the oral LD50s have been observed to be >5 g/kg (bw) and the dermal LD50s have ranged from >2 to >5g/kg (bw). The LC50 for inhalation toxicity ranged from 2.18 mg/l to> 4 mg/l. When tested for skin and eye irritation, the materials have been reported as "non-irritating" to "moderately irritating" Testing in guinea pigs for sensitization has been negative Repeat dose toxicity: . Several studies have been conducted with these oils. The weight of evidence from all available data on highly & severely refined base oils support the presumption that a distillate base oil s toxicity is inversely related to the degree of Troy Laxapet Gel Issue Date: 10/03/2023 Print Date: 31/03/2025 processing it receives. Adverse effects have been reported with even the most severely refined white oils - these appear to depend on animal species and/ or the peculiarities of the study. - ▶ The granulomatous lesions induced by the oral administration of white oils are essentially foreign body responses. The lesions occur only in rats, of which the Fischer 344 strain is particularly sensitive, - The testicular effects seen in rabbits after dermal administration of a highly to severely refined base oil were unique to a single study and may have been related to stress induced by skin irritation, and - The accumulation of foamy macrophages in the alveolar spaces of rats exposed repeatedly via inhalation to high levels of highly to severely refined base oils is not unique to these oils, but would be seen after exposure to many water insoluble materials Reproductive and developmental toxicity: A highly refined base oil was used as the vehicle control in a one-generation reproduction study. The study was conducted according to the OECD Test Guideline 421. There was no effect on fertility and mating indices in either males or females. At necropsy, there were no consistent findings and organ weights and histopathology were considered normal by the study s authors. A single generation study in which a white mineral oil (a food/ drug grade severely refined base oil) was used as a vehicle control is reported. Two separate groups of pregnant rats were administered 5 ml/kg (bw)/day of the base oil via gavage, on days 6 through 19 of gestation. In one of the two base oil dose groups, three malformed foetuses were found among three litters The study authors considered these malformations to be minor and within the normal ranges for the strain of rat. #### Genotoxicity: *In vitro* (mutagenicity): Several studies have reported the results of testing different base oils for mutagenicity using a modified Ames assay Base oils with no or low concentrations of 3-7 ring PACs had low mutagenicity indices. In vivo (chromosomal aberrations): A total of seven base stocks were tested in male and female Sprague-Dawley rats using a bone marrow cytogenetics assay. The test materials were administered via gavage at dose levels ranging from 500 to 5000 mg/kg (bw). Dosing occurred for either a single day or for five consecutive days. None of the base oils produced a significant increase in aberrant cells. Carcinogenicity: Highly & severely refined base oils are not carcinogens, when given either orally or dermally. # GUM ARABIC & SODIUM BENZOATE The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact
eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | × | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | ~ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: 🗶 – Data either not available or does not fill the criteria for classification ✓ – Data available to make classification #### **SECTION 12 Ecological information** #### **Toxicity** | | Endpoint | Test Duration (hr) | Species | Value | Source | |----------------------------|------------------|--------------------|---------------|---------------------|------------------| | Troy Laxapet Gel | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | malt extract | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | petroleum jelly snow white | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | paraffin oils | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 48h | Crustacea | 0.016-
0.027mg/L | 4 | | | EC50(ECx) | 48h | Crustacea | 0.016-
0.027mg/L | 4 | | | LC50 | 96h | Fish | >100mg/L | 4 | | gum arabic | Endpoint | Test Duration (hr) | Species | Value | Source | **Troy Laxapet Gel** Issue Date: 10/03/2023 Print Date: 31/03/2025 | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | |-----------------|------------------|--|-------------------------------------|------------------|------------------| | | Endpoint | Test Duration (hr) | Species | Value | Source | | | LC50 | 96h | Fish | >100mg/l | 2 | | sodium benzoate | EC50 | 48h | Crustacea | <650mg/l | 1 | | | EC50 | 72h | Algae or other aquatic plants | >30.5mg/l | 2 | | | NOEC(ECx) | 72h | Algae or other aquatic plants | 0.09mg/l | 2 | | Legend: | 4. US EPA, Eco | 1. IUCLID Toxicity Data 2. Europe ECHA I
tox database - Aquatic Toxicity Data 5. EC
n Data 7. METI (Japan) - Bioconcentratio | CETOC Aquatic Hazard Assessment Dat | • | | **DO NOT** discharge into sewer or waterways. # Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|---------------------------------------|---------------------------------------| | | No Data available for all ingredients | No Data available for all ingredients | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |---------------|---------------------| | paraffin oils | HIGH (LogKOW = 6.1) | # Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | # **SECTION 13 Disposal considerations** # Waste treatment methods Product / Packaging disposal - ▶ Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site. - ▶ Recycle containers if possible, or dispose of in an authorised landfill. # **SECTION 14 Transport information** # **Labels Required** | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS 14.7. Maritime transport in bulk according to IMO instruments # 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |----------------------------|---------------| | malt extract | Not Available | | petroleum jelly snow white | Not Available | | paraffin oils | Not Available | | gum arabic | Not Available | | sodium benzoate | Not Available | Issue Date: **10/03/2023** Print Date: **31/03/2025** #### 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |----------------------------|---------------| | malt extract | Not Available | | petroleum jelly snow white | Not Available | | paraffin oils | Not Available | | gum arabic | Not Available | | sodium benzoate | Not Available | # **SECTION 15 Regulatory information** # Safety, health and environmental regulations / legislation specific for the substance or mixture #### malt extract is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### petroleum jelly snow white is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Chemical Footprint Project - Chemicals of High Concern List #### paraffin oils is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic #### gum arabic is found on the following regulatory lists Australian Inventory of Industrial Chemicals (AIIC) #### sodium benzoate is found on the following regulatory lists Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 Australian Inventory of Industrial Chemicals (AIIC) #### **Additional Regulatory Information** Not Applicable # **National Inventory Status** | National Inventory | Status | |--|--| | Australia - AIIC / Australia
Non-Industrial Use | No (petroleum jelly snow white) | | Canada - DSL | No (petroleum jelly snow white) | | Canada - NDSL | No (malt extract; petroleum jelly snow white; paraffin oils; gum arabic; sodium benzoate) | | China - IECSC | Yes | | Europe - EINEC / ELINCS /
NLP | Yes | | Japan - ENCS | No (malt extract; petroleum jelly snow white; gum arabic) | | Korea - KECI | No (malt extract) | | New Zealand - NZIoC | Yes | | Philippines - PICCS | No (petroleum jelly snow white) | | USA - TSCA | TSCA Inventory 'Active' substance(s) (malt extract; paraffin oils; gum arabic; sodium benzoate); No (petroleum jelly snow white) | | Taiwan - TCSI | No (petroleum jelly snow white) | | Mexico - INSQ | No (petroleum jelly snow white) | | Vietnam - NCI | No (petroleum jelly snow white) | | Russia - FBEPH | No (malt extract; petroleum jelly snow white; gum arabic) | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | #### **SECTION 16 Other information** | Revision Date | 10/03/2023 | |---------------|------------| | Initial Date | 09/05/2020 | Issue Date: 10/03/2023 Print Date: 31/03/2025 #### **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|---| | 4.1 | 23/12/2022 | Classification review due to GHS Revision change. | | 5.1 | 10/03/2023 | Classification change due to full database hazard calculation/update. | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** - ▶ PC TWA: Permissible Concentration-Time Weighted Average - ▶ PC STEL: Permissible Concentration-Short Term Exposure Limit - ▶ IARC: International Agency for Research on Cancer - ▶ ACGIH: American Conference of Governmental Industrial Hygienists - ▶ STEL: Short Term Exposure Limit - ▶ TEEL: Temporary Emergency Exposure Limit。 - ▶ IDLH: Immediately Dangerous to Life or Health Concentrations - ▶ ES: Exposure Standard - ▶ OSF: Odour Safety Factor - ▶ NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - ▶ TLV: Threshold Limit Value - ▶ LOD: Limit Of Detection - ▶ OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - ▶ BEI: Biological Exposure Index - ▶ DNEL: Derived No-Effect Level - ▶ PNEC: Predicted no-effect concentration - ▶ MARPOL: International Convention for the Prevention of Pollution from Ships - ▶ IMSBC: International Maritime Solid Bulk Cargoes Code - ▶ IGC: International Gas Carrier Code - ▶ IBC: International Bulk
Chemical Code - ▶ AIIC: Australian Inventory of Industrial Chemicals - ▶ DSL: Domestic Substances List - NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ELINCS: European List of Notified Chemical Substances - ► NLP: No-Longer Polymers - ▶ ENCS: Existing and New Chemical Substances Inventory - ▶ KECI: Korea Existing Chemicals Inventory - ▶ NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - ▶ TSCA: Toxic Substances Control Act - ► TCSI: Taiwan Chemical Substance Inventory - INSQ: Inventario Nacional de Sustancias Químicas - NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.