Troy Iodin Spray Skin & Wound Dressing (Troy Laboratories Iodin Spray Skin & Wound Dressing)

Troy Laboratories Pty Ltd

Chemwatch: 5398-44
Version No: 3.1.1.1
Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

<table>
<thead>
<tr>
<th>Product Identifier</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Product name</td>
<td>Troy Iodin Spray Skin & Wound Dressing (Troy Laboratories Iodin Spray Skin & Wound Dressing)</td>
</tr>
<tr>
<td>Synonyms</td>
<td>APVMA number: 38561</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>ETHANOL (ETHYL ALCOHOL) or ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION)</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

- **Relevant identified uses**: An aid in the treatment and prevention of skin infections caused by bacteria and fungi in dogs, cats, horses, cattle and sheep. To be used as directed on product label.

Details of the supplier of the safety data sheet

| Registered company name | Troy Laboratories Pty Ltd
| Address | 37 Glendenning Road Glendenning NSW 2761 Australia
| Telephone | 02 8808 3600
| Fax | 02 9677 9300
| Website | www.Troylab.com.au
| Email | admin@troylab.com.au |

Emergency telephone number

| Association / Organisation | Troy Laboratories Pty Ltd
| Emergency telephone numbers | 02 8808 3600 (Office hours (8am – 4pm, Monday to Friday))
| Other emergency telephone numbers | Not Available |

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

- **Poisons Schedule**: S6
- **Classification [1]**: Flammable Liquid Category 2, Eye Irritation Category 2A

Legend:

Label elements

- **Hazard pictogram(s)**:

 - ![Flammable Liquid](image1)
 - ![Eye Irritation](image2)

- **SIGNAL WORD**: DANGER

Hazard statement(s)

- **H225**: Highly flammable liquid and vapour.
- **H319**: Causes serious eye irritation.

Precautionary statement(s) Prevention

- **P210**: Keep away from heat/sparks/open flames/hot surfaces. - No smoking.
- **P233**: Keep container tightly closed.
- **P240**: Ground/bond container and receiving equipment.
- **P241**: Use explosion-proof electrical/ventilating/lighting/Intrinsically safe equipment.
P242 Use only non-sparking tools.
P243 Take precautionary measures against static discharge.
P280 Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary statement(s) Response

<table>
<thead>
<tr>
<th>Cas No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-17-5</td>
<td>>60</td>
<td>ethanol</td>
</tr>
<tr>
<td>25655-41-8</td>
<td>1-10</td>
<td>povidone-iodine</td>
</tr>
<tr>
<td>57-55-6</td>
<td>1-10</td>
<td>propylene glycol</td>
</tr>
<tr>
<td>Not Available</td>
<td>balance</td>
<td>Ingredients determined not to be hazardous</td>
</tr>
</tbody>
</table>

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>64-17-5</td>
<td>>60</td>
<td>ethanol</td>
</tr>
<tr>
<td>25655-41-8</td>
<td>1-10</td>
<td>povidone-iodine</td>
</tr>
<tr>
<td>57-55-6</td>
<td>1-10</td>
<td>propylene glycol</td>
</tr>
<tr>
<td>Not Available</td>
<td>balance</td>
<td>Ingredients determined not to be hazardous</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
- If this product comes in contact with the eyes:
 - Wash out immediately with fresh running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Seek medical attention without delay; if pain persists or recurs seek medical attention.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
- If skin contact occurs:
 - Immediately remove all contaminated clothing, including footwear.
 - Flush skin and hair with running water (and soap if available).
 - Seek medical attention in event of irritation.

Inhalation
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
- Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion
- For advice, contact a Poisons Information Centre or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

Continued...
Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.

- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog - Large fires only.

Special hazards arising from the substrate or mixture

Fire Incompatibility
- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Fight fire from a safe distance, with adequate cover.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control the fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard
- Liquid and vapour are highly flammable.
- Severe fire hazard when exposed to heat, flame and/or oxidisers.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- Combustion products include:
 - carbon dioxide (CO2)
 - hydrogen iodide
 - other pyrolysis products typical of burning organic material.

HAZCHEM
- 2YE

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions
See section 12

Methods and material for containment and cleaning up

Minor Spills
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- Collect residues in a flammable waste container.

Major Spills
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour.
- Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
If contamination of drains or waterways occurs, advise emergency services.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights, heat or ignition sources.
- When handling, DO NOT eat, drink or smoke.
- Vapour may ignite on pumping or pouring due to static electricity.
- DO NOT use plastic buckets.
- Earth and secure metal containers when dispensing or pouring product.
- Use spark-free tools when handling.
- Avoid contact with incompatible materials.
- Keep containers securely sealed.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Other information

- Store in the dark.
- Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- Keep containers securely sealed.
- Store away from incompatible materials in a cool, dry well ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

- Packing as supplied by manufacturer.
- Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i) - Drums and Jerry cans must be of the non-removable head type. (ii) : Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages.
- In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

<table>
<thead>
<tr>
<th>OCCUPATIONAL EXPOSURE LIMITS (OEL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGREDIENT DATA</td>
</tr>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
</tr>
</tbody>
</table>

| **EMERGENCY LIMITS** |
Ingredient	**Material name**	**TEEL-1**	**TEEL-2**	**TEEL-3**
ethanol	Ethanol: (Ethyl alcohol)	Not Available	Not Available	15000 ppm
povidone-iodine	Poly(1-(2-oxo-1-pyrrolidinyl)ethylene)iodine complex: (Iodine solutions)	3.8 mg/m³	42 mg/m³	250 mg/m³
propylene glycol	Polypropylene glycols	30 mg/m³	330 mg/m³	2000 mg/m³
propylene glycol	Propylene glycol; (1,2-Propanediol)	30 mg/m³	1300 mg/m³	7900 mg/m³

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethanol</td>
<td>3,300 ppm</td>
<td>Not Available</td>
</tr>
<tr>
<td>povidone-iodine</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>propylene glycol</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapours, degreasing etc., evaporating from tank (in still air).</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, high speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

1. Room air currents minimal or favourable to capture
2. Contaminants of low toxicity or of nuisance value only
3. Intermittent, low production.
4. Large hood or large air mass in motion

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent].
- Eye and face protection
- Respiratory protection

Eye and face protection

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber.
- Ensure there is ready access to a safety shower.
- Hands/feet protection
- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Eye and face protection
- Respiratory protection

Respiratory protection

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 5 x ES</td>
<td>A-AUS / Class 1 P2</td>
<td>A-PAPR-AUS / Class 1 P2</td>
<td></td>
</tr>
<tr>
<td>up to 25 x ES</td>
<td>Air-line*</td>
<td>A-2 P2</td>
<td>A-PAPR-2 P2</td>
</tr>
</tbody>
</table>

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the "Forsberg Clothing Performance Index", The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

Troy Iodin Spray Skin & Wound Dressing (Troy Laboratories Iodin Spray Skin & Wound Dressing)

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE/EVAL/PE</td>
<td>A</td>
</tr>
<tr>
<td>BUTYL</td>
<td>C</td>
</tr>
<tr>
<td>NATURAL RUBBER</td>
<td>C</td>
</tr>
</tbody>
</table>

Continued...
SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Reddish brown highly flammable liquid with characteristic iodine odour; mixes with water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>78 (ethanol)</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>17</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>HIGHLY FLAMMABLE.</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>19 (ethanol)</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>3 (ethanol)</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>10 @29C (ethanol)</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>Miscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Volatile Component (%/vol)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>pH as a solution (1%)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity: See section 7

Chemical stability:
- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions: See section 7

Conditions to avoid: See section 7

Incompatible materials: See section 7

Hazardous decomposition products: See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled: Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.
Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolves to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system
Ingestion

Accidental ingestion of the material may be damaging to the health of the individual.

- **The material may produce moderate skin irritation; limited evidence or practical experience suggests, that the material either:**
 - produces moderate inflammation of the skin in a substantial number of individuals following direct contact and/or
 - produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic).

The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epithelium. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

- **Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.**
- **There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals.**

Eye

Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals.

Skin contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure or irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

- **Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.**
- **There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals.**

Chronic

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Troy Iodin Spray Skin & Wound Dressing (Troy Laboratories Iodin Spray Skin & Wound Dressing)

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Propylene glycol

- **Eye:** adverse effect observed (irritating)\(^2\)
- **Skin:** no adverse effect observed (not irritating)\(^1\)

povidone-iodine

- **Eye:** no adverse effect observed (not irritating)\(^1\)

ethanol

- **Eye:** moderate\(^2\)

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity.
2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

POVIDONE-IODINE

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

PROPYLENE GLYCOL

The acute oral toxicity of propylene glycol is very low, and large quantities are required to cause perceptible health damage in humans. Serious toxicity generally occurs only at plasma concentrations over 1 g/L, which requires extremely high intake over a relatively short period of time. It would be nearly impossible to reach toxic levels by consuming foods or supplements, which contain at most 1 g/kg of PG. Cases of propylene glycol poisoning are usually related to either inappropriate intravenous administration or accidental ingestion of large quantities by children. The potential for long-term oral toxicity is also low. Because of its low chronic oral toxicity, propylene glycol was classified by the U. S. Food and Drug Administration as "generally recognized as safe" (GRAS) for use as a direct food additive. Prolonged contact with propylene glycol is essentially non-irritating to the skin. Undiluted propylene glycol is minimally irritating to the eye, and can produce slight transient conjunctivitis (the eye recovers after the exposure is removed). Exposure to mists may cause eye irritation, as well as upper respiratory tract irritation. Inhalation of the propylene glycol vapours appears to present no significant hazard in ordinary applications. However, limited human experience indicates that inhalation of exposure glycol mists could be irritating to some individuals. It is therefore recommended that propylene glycol not be used in applications where inhalation exposure or human eye contact with the spray mists of these materials is likely, such as fogs for theatrical productions or antifreeze solutions for emergency eye wash stations.

Propylene glycol is metabolised in the human body into pyruvic acid (a normal part of the glucose-metabolism process, readily converted to energy), acetic acid (handled by ethanol-metabolism), lactic acid (a normal acid generally abundant during digestion), and propionaldehyde (a potentially hazardous substance).

Propylene glycol shows no evidence of being a carcinogen or of being genotoxic. Research has suggested that individuals who cannot tolerate propylene glycol probably experience a special form of irritation, but that they only rarely develop allergic contact dermatitis. Other investigators believe that the incidence of allergic contact dermatitis to propylene glycol may be greater than 2% in patients with eczema.

One study strongly suggests a connection between airborne concentrations of propylene glycol in houses and development of asthma and allergic reactions, such as rhinitis or hives in children.

Another study suggested that the concentrations of PGEs (counted as the sum of propylene glycol and glycol ethers) in indoor air, particularly...
Toxicity

<table>
<thead>
<tr>
<th>Troy Iodin Spray Skin & Wound Dressing (Troy Laboratories Iodin Spray Skin & Wound Dressing)</th>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>2mg/L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>17.921mg/L</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>NOEC</td>
<td>2016</td>
<td>Fish</td>
<td>0.000375mg/L</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Povidone-Iodine</th>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOEC</td>
<td>0.08</td>
<td>Fish</td>
<td>3000.0mg/L</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propylene Glycol</th>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>>10-mg/L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>43-500mg/L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>19-mg/L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>NOEC</td>
<td>168</td>
<td>Fish</td>
<td>11-530mg/L</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>LOW (Half-life = 2.17 days)</td>
<td>LOW (Half-life = 5.08 days)</td>
</tr>
<tr>
<td>Propylene Glycol</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>LOW (LogKOW = -0.31)</td>
</tr>
<tr>
<td>Propylene Glycol</td>
<td>LOW (BCF = 1)</td>
</tr>
</tbody>
</table>

Mobility in soil

...
Ingredient Mobility

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethanol</td>
<td>HIGH (KOC = 1)</td>
</tr>
<tr>
<td>propylene glycol</td>
<td>HIGH (KOC = 1)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.
- Otherwise:
 - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
 - DO NOT allow wash water from cleaning or process equipment to enter drains.
 - It may be necessary to collect all wash water for treatment before disposal.
 - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
 - Where in doubt contact the responsible authority.
 - Recycle wherever possible.
 - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
 - Dispose of by: burial in a land-fill specifically licensed to accept chemical and/or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
 - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>•2YE</td>
</tr>
</tbody>
</table>

Land transport (ADG)

- **UN number** 1170
- **UN proper shipping name** ETHANOL (ETHYL ALCOHOL) or ETHANOL SOLUTION (ETHYL ALCOHOL SOLUTION)
- **Transport hazard class(es)**
 - Class: 3
 - Subrisk: Not Applicable
- **Packing group** II
- **Environmental hazard** Not Applicable
- **Special precautions for user**
 - Special provisions: 144
 - Limited quantity: 1 L

Air transport (ICAO-IATA / DGR)

- **UN number** 1170
- **UN proper shipping name** Ethanol or Ethanol. solution
- **Transport hazard class(es)**
 - ICAO/IATA Class: 3
 - ICAO / IATA Subrisk: Not Applicable
 - ERG Code: 3L
- **Packing group** II
- **Environmental hazard** Not Applicable
- **Special precautions for user**
 - Special provisions: A3 A58 A180
 - Cargo Only Packing Instructions: 364
 - Cargo Only Maximum Qty / Pack: 60 L
 - Passenger and Cargo Packing Instructions: 353
 - Passenger and Cargo Maximum Qty / Pack: 5 L
 - Passenger and Cargo Limited Quantity Packing Instructions: Y341
 - Passenger and Cargo Limited Maximum Qty / Pack: 1 L

Sea transport (IMDG-Code / GGVSee)
Transport in bulk according to Annex II of MARPOL and the IBC code
Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ETHANOL IS FOUND ON THE FOLLOWING REGULATORY LISTS	Australia Inventory of Chemical Substances (AICS)
POVIDONE-IODINE IS FOUND ON THE FOLLOWING REGULATORY LISTS	Australia Inventory of Chemical Substances (AICS)
PROPYLENE GLYCOL IS FOUND ON THE FOLLOWING REGULATORY LISTS	Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5

National Inventory Status

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>No (ethanol; povidone-iodine; propylene glycol)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>No (povidone-iodine)</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>Yes</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Yes</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Yes</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Yes</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Yes</td>
</tr>
<tr>
<td>Taiwan - TCSI</td>
<td>Yes</td>
</tr>
<tr>
<td>Mexico - INSO</td>
<td>Yes</td>
</tr>
<tr>
<td>Vietnam - NCI</td>
<td>Yes</td>
</tr>
<tr>
<td>Russia - ARIPS</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Legend:
Yes = All CAS declared ingredients are on the inventory
No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date 08/05/2020
Initial Date 06/05/2020

SDS Version Summary

<table>
<thead>
<tr>
<th>Version</th>
<th>Issue Date</th>
<th>Sections Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1.1</td>
<td>06/05/2020</td>
<td>Appearance, Name</td>
</tr>
<tr>
<td>3.1.1.1</td>
<td>08/05/2020</td>
<td>Ingredients</td>
</tr>
</tbody>
</table>

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average