

Frusemide Injection

Troy Laboratories Pty Ltd

Chemwatch: **5398-43** Version No: **3.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **08/05/2020** Print Date: **13/05/2020** L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Frusemide Injection
Synonyms	APVMA number: 50268
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses For diuresis and saluresis in dogs, cats, horses and cattle. To be used as directed on product label.

Details of the supplier of the safety data sheet

Registered company name	Troy Laboratories Pty Ltd	
Address	7 Glendenning Road Glendenning NSW 2761 Australia	
Telephone	02 8808 3600	
Fax	02 9677 9300	
Website	www.Troylab.com.au	
Email	admin@troylab.com.au	

Emergency telephone number

Association / Organisation	Troy Laboratories Pty Ltd	
Emergency telephone numbers	02 8808 3600 (Office hours (8am – 4pm, Monday to Friday))	
Other emergency telephone numbers	Not Available	

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	S4	
Classification [1]	Eye Irritation Category 2A, Reproductive Toxicity Category 1B	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

SIGNAL WORD	DANGER
-------------	--------

Hazard statement(s)

H319	Causes serious eye irritation.
H360	May damage fertility or the unborn child.

Precautionary statement(s) Prevention

P201	btain special instructions before use.	
P281	Use personal protective equipment as required.	
P280	Wear protective gloves/protective clothing/eye protection/face protection.	

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/attention.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	

Issue Date: 08/05/2020 Print Date: 13/05/2020

P337+P313

If eye irritation persists: Get medical advice/attention.

Precautionary statement(s) Storage

P405

Store locked up.

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
54-31-9	1-10	furosemide
111-42-2	1-10	diethanolamine
Not Available	balance	Ingredients determined not to be hazardous

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

▶ Establish a patent airway with suction where necessary.

- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- ▶ Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- Anticipate seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- ▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- ▶ Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- ▶ Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

Chemwatch: **5398-43**Version No: **3.1.1.1**

Page 3 of 11

Frusemide Injection

Issue Date: **08/05/2020**Print Date: **13/05/2020**

The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas.

Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances. In such an event consider:

- foam.
- dry chemical powder.
- carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility	None known.
Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 The material is not readily combustible under normal conditions. However, it will break down under fire conditions and the organic component may burn. Not considered to be a significant fire risk. Heat may cause expansion or decomposition with violent rupture of containers. Decomposes on heating and may produce toxic fumes of carbon monoxide (CO). May emit acrid smoke. Decomposes on heating and produces toxic fumes of: carbon dioxide (CO2) hydrogen bromide nitrogen oxides (NOx) sulfur oxides (SOx) other pyrolysis products typical of burning organic material. May emit poisonous fumes. May emit corrosive fumes.
HAZCHEM	Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Safe handling

Precautions for safe handling

► Avoid all personal contact, including inhalation.

- ► Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.

▶ DO NOT enter confined spaces until atmosphere has been checked.

- ► DO NOT allow material to contact humans, exposed food or food utensils.
- ▶ Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- ▶ Keep containers securely sealed when not in use.

Chemwatch: **5398-43**Version No: **3.1.1.1**

Frusemide Injection

Issue Date: **08/05/2020**Print Date: **13/05/2020**

- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Store in original containers.
- ► Keep containers securely sealed.
- Other information

 Neep containers securely sealed.

 Store in a cool, dry, well-ventilated area.
 - ▶ Store away from incompatible materials and foodstuff containers.
 - Protect containers against physical damage and check regularly for leaks.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- ▶ Glass container is suitable for laboratory quantities
- ► Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- ► Check all containers are clearly labelled and free from leaks.

Storage incompatibility

None known

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	diethanolamine	Diethanolamine	3 ppm / 13 mg/m3	Not Available	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
diethanolamine	Diethanolamine	3 mg/m3	28 mg/m3	130 mg/m3
Ingredient	Original IDLH		Revised IDLH	
furosemide	Not Available		Not Available	
diethanolamine	Not Available		Not Available	

OCCUPATIONAL EXPOSURE BANDING

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
furosemide	C > 0.1 to ≤ milligrams per cubic meter of air (mg/m³)		
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

Exposure controls

Enclosed local exhaust ventilation is required at points of dust, fume or vapour generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapours.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

 $A fume \ hood \ or \ vented \ balance \ enclosure \ is \ recommended \ for \ weighing/ \ transferring \ quantities \ exceeding \ 500 \ mg.$

When handling quantities up to 500 gram in either a standard laboratory with general dilution ventilation (e.g. 6-12 air changes per hour) is preferred. Quantities up to 1 kilogram may require a designated laboratory using fume hood, biological safety cabinet, or approved vented enclosures. Quantities exceeding 1 kilogram should be handled in a designated laboratory or containment laboratory using appropriate barrier/containment technology.

Manufacturing and pilot plant operations require barrier/ containment and direct coupling technologies.

Appropriate engineering controls

Barrier/ containment technology and direct coupling (totally enclosed processes that create a barrier between the equipment and the room) typically use double or split butterfly valves and hybrid unidirectional airflow/ local exhaust ventilation solutions (e.g. powder containment booths). Glove bags, isolator glove box systems are optional. HEPA filtration of exhaust from dry product handling areas is required.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, etc. evaporating from tank (in still air)	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Page 5 of 11 Frusemide Injection

Issue Date: 08/05/2020 Print Date: 13/05/2020

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

The following protective devices are recommended where exposures exceed the recommended exposure control guidelines by factors of:

10; high efficiency particulate (HEPA) filters or cartridges

10-25; loose-fitting (Tyvek or helmet type) HEPA powered-air purifying respirator.

25-50; a full face-piece negative pressure respirator with HEPA filters

50-100; tight-fitting, full face-piece HEPA PAPR

100-1000; a hood-shroud HEPA PAPR or full face-piece supplied air respirator operated in pressure demand or other positive pressure mode.

Personal protection

When handling very small quantities of the material eye protection may not be required.

- For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:
- Chemical goggles
- Face shield. Full face shield may be required for supplementary but never for primary protection of eyes.

Eye and face protection

▶ Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Hands/feet protection

- P Rubber gloves (nitrile or low-protein, powder-free latex, latex/ nitrile). Employees allergic to latex gloves should use nitrile gloves in preference
- Double gloving should be considered.
- ► PVC gloves.
 - ▶ Change gloves frequently and when contaminated, punctured or torn.
 - ▶ Wash hands immediately after removing gloves.
 - ▶ Protective shoe covers. [AS/NZS 2210]
 - ▶ Head covering

Body protection

See Other protection below

- ▶ For quantities up to 500 grams a laboratory coat may be suitable.
 - For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at

Other protection

- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers. For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- ► Eye wash unit.
- Ensure there is ready access to an emergency shower.
- ► For Emergencies: Vinyl suit

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computergenerated selection:

Frusemide Injection

Material	CPI
BUTYL	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С

Respiratory protection

Type AK-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AK-AUS P2	-	AK-PAPR-AUS / Class 1 P2
up to 50 x ES	-	AK-AUS / Class 1 P2	-
up to 100 x ES	-	AK-2 P2	AK-PAPR-2 P2 ^

Frusemide Injection

Issue Date: **08/05/2020**Print Date: **13/05/2020**

	1
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE	С
PE/EVAL/PE	С
PVA	С
PVC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
TEFLON	С
VITON	С
VITON/CHLOROBUTYL	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Clear faint yellow liquid with no odour; mixes with water.		
Physical state	Liquid	Relative density (Water = 1)	1.024
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	8.5-9.3	Decomposition temperature	Not Available
Melting point / freezing point (°C)	~0	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	~100	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	2.37 @20C	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	Product is considered stable and hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

Not normally a hazard due to non-volatile nature of product

Chemwatch: **5398-43** Pag
Version No: **3.1.1.1**

Frusemide Injection

Page 7 of 11 Issue Date: 08/05/2020
Print Date: 13/05/2020

Ingestion

The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

Skin Contact

The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Eye

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Chronic

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in impaired fertility on the basis of: - clear evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects.

There is sufficient evidence to provide a strong presumption that human exposure to the material may result in developmental toxicity, generally on the basis of:

- clear results in appropriate animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals.

Frusemide Injection	TOXICITY	IRRITATION	
	Not Available	Not Available	
	TOXICITY	IRRITATION	
furosemide	Oral (rat) LD50: 2600 mg/kg ^[2]	Not Available	
	TOXICITY	IRRITATION	
	Dermal (rabbit) LD50: 8342.88 mg/kg ^[2]	Eye (rabbit): 5500 mg - SEVERE	
	Oral (rat) LD50: 677.04 mg/kg ^[2]	Eye (rabbit):0.75 mg/24 hr SEVERE	
diethanolamine		Eye: adverse effect observed (irritating) ^[1]	
		Skin (rabbit): 50 mg (open)-mild	
		Skin (rabbit): 500 mg/24 hr-mild	
		Skin: adverse effect observed (irritating) $^{[1]}$	

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

551diureticloop

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

FUROSEMIDE

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Tinnitus, decreased pulse rate and fall in blood pressure, other cardiac changes, arteriolar constriction, interstitial nephritis, increases and decreases in urine volume, paternal effects, effects on embryos (extra embryonic structures), specific developmental abnormalities (musculoskeletal system) and metabolic alkalosis recorded. Furosemide also can lead to gout caused by hyperuricemia. Hyperglycemia is

(musculoskeletal system) and metabolic alkalosis recorded. Furosemide also can lead to gout caused by hyperuricemia. Hyperglycemia is also a common side effect. In the treatment of heart failure, many studies have shown that the long-term use of furosemide can cause varying degrees of thiamine deficiency, so thiamine supplementation is also suggested. Although disputed,] it is considered ototoxic: "usually with large intravenous doses and rapid administration and in renal impairment". Other precautions include: nephrotoxicity, sulfonamide (sulfa) allergy, and increases free thyroid hormone effects with large doses.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

DIETHANOLAMINE

While it is difficult to generalise about the full range of potential health effects posed by exposure to the many different amine compounds, characterised by those used in the manufacture of polyurethane and polyisocyanurate foams, it is agreed that overexposure to the majority of these materials may cause adverse health effects.

- Many amine-based compounds can induce histamine liberation, which, in turn, can trigger allergic and other physiological effects, including bronchoconstriction or bronchial asthma and rhinitis.
- Systemic symptoms include headache, nausea, faintness, anxiety, a decrease in blood pressure, tachycardia (rapid heartbeat), itching, erythema (reddening of the skin), urticaria (hives), and facial edema (swelling). Systemic effects (those affecting the body) that are related to the pharmacological action of amines are usually transient.

Typically, there are four routes of possible or potential exposure: inhalation, skin contact, eye contact, and ingestion.

Inhalation:

Inhalation of vapors may, depending upon the physical and chemical properties of the specific product and the degree and length of exposure, result in moderate to severe irritation of the tissues of the nose and throat and can irritate the lungs.

Products with higher vapour pressures have a greater potential for higher airborne concentrations. This increases the probability of worker

 Chemwatch: 5398-43
 Page 8 of 11
 Issue Date: 08/05/2020

 Version No: 3.1.1.1
 Print Date: 13/05/2020

Frusemide Injection

exposure.

Higher concentrations of certain amines can produce severe respiratory irritation, characterised by nasal discharge, coughing, difficulty in breathing, and chest pains.

Chronic exposure via inhalation may cause headache, nausea, vomiting, drowsiness, sore throat, bronchopneumonia, and possible lung damage. Also, repeated and/or prolonged exposure to some amines may result in liver disorders, jaundice, and liver enlargement. Some amines have been shown to cause kidney. blood, and central nervous system disorders in laboratory animal studies.

While most polyurethane amine catalysts are not sensitisers, some certain individuals may also become sensitized to amines and may experience respiratory distress, including asthma-like attacks, whenever they are subsequently exposed to even very small amounts of vapor. Once sensitised, these individuals must avoid any further exposure to amines. Although chronic or repeated inhalation of vapor concentrations below hazardous or recommended exposure limits should not ordinarily affect healthy individuals, chronic overexposure may lead to permanent pulmonary injury, including a reduction in lung function, breathlessness, chronic bronchitis, and immunologic lung disease.

Inhalation hazards are increased when exposure to amine catalysts occurs in situations that produce aerosols, mists, or heated vapors. Such situations include leaks in fitting or transfer lines. Medical conditions generally aggravated by inhalation exposure include asthma, bronchitis, and emphysema.

Skin Contact:

Skin contact with amine catalysts poses a number of concerns. Direct skin contact can cause moderate to severe irritation and injury-i.e., from simple redness and swelling to painful blistering, ulceration, and chemical burns. Repeated or prolonged exposure may also result in severe cumulative dermatitis.

Skin contact with some amines may result in allergic sensitisation. Sensitised persons should avoid all contact with amine catalysts. Systemic effects resulting from the absorption of the amines through skin exposure may include headaches, nausea, faintness, anxiety, decrease in blood pressure, reddening of the skin, hives, and facial swelling. These symptoms may be related to the pharmacological action of the amines, and they are usually transient.

Eye Contact:

Amine catalysts are alkaline in nature and their vapours are irritating to the eyes, even at low concentrations.

Direct contact with the liquid amine may cause severe irritation and tissue injury, and the "burning" may lead to blindness. (Contact with solid products may result in mechanical irritation, pain, and corneal injury.)

Exposed persons may experience excessive tearing, burning, conjunctivitis, and corneal swelling.

The corneal swelling may manifest itself in visual disturbances such as blurred or "foggy" vision with a blue tint ("blue haze") and sometimes a halo phenomenon around lights. These symptoms are transient and usually disappear when exposure ceases.

Some individuals may experience this effect even when exposed to concentrations below doses that ordinarily cause respiratory irritation.

Ingestion:

The oral toxicity of amine catalysts varies from moderately to very toxic.

Some amines can cause severe irritation, ulceration, or burns of the mouth, throat, esophagus, and gastrointestinal tract.

Material aspirated (due to vomiting) can damage the bronchial tubes and the lungs

Affected persons also may experience pain in the chest or abdomen, nausea, bleeding of the throat and the gastrointestinal tract, diarrhea, dizziness, drowsiness, thirst, circulatory collapse, coma, and even death.

Polyurethane Amine Catalysts: Guidelines for Safe Handling and Disposal; Technical Bulletin June 2000 Alliance for Polyurethanes Industry

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

for diethanolamine (DEA):

In animal studies, DEA has low acute toxicity via the oral and dermal routes with moderate skin irritation and severe eye irritation. In subchronic toxicity testing conducted via the oral route in rats and mice, the main effects observed were increased organ weights and histopathology of the kidney and/or liver, with the majority of other tissue effects noted only at relatively high dosages. In subchronic studies conducted via the dermal route, skin irritation was noted as well as systemic effects similar to those observed in the oral studies. DEA has not been shown to be mutagenic or carcinogenic in rats; however, there is evidence of its carcinogenicity in mice.

Subchronic toxicity: The subchronic toxicity of DEA has been studied in F344 rats and B6C3F1 mice by exposure through drinking water or dermal administration, in 2 week and 13 week studies.

Target organs for toxicity included blood, kidney, brain and spinal cord, seminiferous tubules and dermal application site in rats and liver, kidney, heart, salivary gland and dermal application site in mice. Effects on seminiferous tubules were accompanied by reductions in sperm count and reduced sperm motility Hematological evaluations indicated normochromic, microcytic anemia in the dermal study in male rats (NOEL =32 mg/g) and females (LOEL = 32 mg/kg). Anemia was also observed in rats in the drinking water study with a LOEL of 14 mg/kg/d in females and a LOEL of 48 mg/kg/d in males for altered hematological parameters. These findings were similar to those observed in the 2 week studies, but the magnitude of the changes was greater in the 13 week studies. Hematological parameters were normal in controls. No associated histopathological changes were noted in femoral bone marrow. Haematological parameters were not evaluated in mice.

Developmental toxicity: In a developmental toxicity study conducted via the oral route, effects of concern were observed only in the presence of maternal toxicity. In a developmental toxicity study conducted via the dermal route using two species of mammals, developmental toxicity was observed only in one species and only at doses causing significant maternal toxicity. Metabolically, DEA is excreted largely unchanged in the urine.

Carcinogenicity: A two-year dermal cancer study bioassay results on DEA and three fatty acid condensates of DEA indicated that liver tumours occurred in male and female mice exposed to DEA and two of the condensates. In addition kidney tumours occurred in male mice exposed to DEA and one of the condensates. Compelling evidence suggested that the toxicity observed in mice and rats treated with the DEA condensates was associated with free DEA and not with other components of the condensates. A weight of evidence analysis of data relevant to the assessment of the liver and kidney tumours in mice resulted in the conclusion that these tumours are not relevant to humans under the expected conditions of exposure and that liver and kidney toxicity should be evaluated on a threshold basis. This conclusion is based on the following:

- ▶ DEA is not genotoxic
- ▶ tumour development occurred at doses also associated with chronic hyperplasia
- ▶ there was no dose-related increase in malignancy, multiplicity of tumours or decrease in latency period
- ▶ tumours occurred late in life
- ▶ tumour response was species-specific (only mice were affected, not rats)
- ▶ tumour response was sex-specific (only male mice were affected, not females)
- tumour development was site-specific, with only liver and kidney affected, both sites of DEA accumulation;
- there was no tumour response in skin, despite evidence of chronic dermal toxicity
- ▶ there is a plausible mechanism, supported by various data, to explain the renal toxicity of DEA
- ${}^{\blacktriangleright}\ \ \text{data support threshold mechanisms of renal carcinogenesis for a number of non-genotoxic chemicals}$
- the exposure regime used in the mouse study (i.e., lifetime continuous exposure to DEA in ethanol vehicle at doses causing chronic dermal toxicity) is not relevant to human exposure (exposure through cosmetic vehicles with daily removal, under non-irritating conditions).

In considering the aggregate data on a DEA basis from the four studies using DEA and related condensates, the NOEL for kidney toxicity was 19 mg/kg/d, which resulted from a dose of 100 mg/kg/d of cocamide DEA containing 19% free DEA.

Anaemia: Rats exposed to DEA condensates developed anaemia. This was considered to be of to be relevant for humans since anaemia in rodents and humans share common etiologies. The proposed mechanism by which DEA could cause anemia involves disruption of phospholipid metabolism leading to membrane perturbation and functional change to erythrocytes. Some doubt about the relevance of the findings arises because ethanol was used as the vehicle in the dermal studies, and ethanol is known to cause anaemia in rodents through a mechanism involving membrane disruption. The possibility of a synergistic or additive role for DEA and ethanol in combination cannot be ruled out. In considering the aggregate data on a DEA basis from the four 13-week dermal studies using DEA and related condensates, the NOEL for microcytic anemia was 9.5 mg/kg/d, which resulted from a dose of 50 mg/kg/d of cocamide DEA containing 19% free DEA.

The NOELs for mice and rats derived in this hazard assessment were as follows:

Chemwatch: **5398-43** Page **9** of **11**

DEA

Frusemide Injection

Issue Date: **08/05/2020**Print Date: **13/05/2020**

Anaemia in rats: 9.5 mg/kg/d (based on microcytic anemia)

Organ toxicity in mice: 2.2 mg/kg/d (based on liver toxicity)

In extrapolating among species for the purposes of risk assessment, the prime consideration with respect to dermally applied DEA was differential dermal absorption. Evidence indicates that dermal penetration of

DEA is greatest in mice and lower in rats and humans. Interspecies extrapolation was accomplished in this assessment by converting applied doses to bioavailable doses (i.e., internal doses) using dermal bioavailability determined in studies with rats and mice in vivo, so as to be able to compare these with internal doses expected to be experienced by humans through use of personal care products.

Based on measured bioavailability in mice and rats, the bioavailable NOELs corresponding to the foregoing were:

Anaemia in rats: 0.8 mg/kg/d (based on microcytic anemia)

Organ toxicity in mice: 0.55 mg/kg/d (based on liver toxicity)

Kidney toxicity: Effects on the kidney were observed in rats treated with DEA in drinking water or by dermal exposure after as little as 2 weeks of exposure. Effects included renal tubule hyperplasia, renal tubular epithelial necrosis, renal tubule mineralization and increased relative organ weight. Similar changes were observed after 13 weeks of exposure of rats to DEA in drinking water and by dermal administration. The NOEL in male rats was 250 mg/kg/d in the dermal study, while in female rats renal tubule mineralisation was observed at the lowest dose of 32 mg/kg/d. After 2 years of dermal exposure there were no histopathological changes in the kidneys of male rats given doses of up to 64 mg/kg/d. In females, there were no significant increases in the incidences of renal tubule epithelial necrosis, hyperplasia or mineralisation as was observed after 13 weeks of exposure, however, there was an increase in the severity and incidence of nephropathy. This was the result of a treatmentrelated exacerbation of a previously existing lesion, since the incidence in controls was 80%, increasing to 94-96% in treated groups. There was no significant increase in the incidence of kidney tumours in rats treated with DEA or any of the condensates in 2-year dermal studies. Liver toxicity: Effects on liver, including increases in relative organ weight and histopathological changes were observed in male and female mice in the 2 week drinking water study with DEA. Increases in liver weight were observed in the two week dermal study, but were not associated with histopathological changes. After 13 weeks of exposure, relative liver weights were increased compared to controls in male and female rats. with no associated histopathology. There is some doubt about whether these changes in liver weights were of toxicological significance, since there was no associated histopathology, the dose-response was not consistent and there were no effects on liver in the 2 year study in rats. In the study with coconut diethanolamide (CDEA) (100 and 200 mg/kg/d) in which 19% of the applied dose was DEA, there were no liver effects in rats after 13 weeks or 2 years of dermal exposure. No liver toxicity in rats was observed in the 2 year dermal studies of lauramide or oleamide

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	✓
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

X − Data either not available or does not fill the criteria for classification
 ✓ − Data available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Tox	icit	ν

Version No: 3.1.1.1

Frusemide Injection	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
furosemide	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	328.014mg/L	3
	EC50	96	Algae or other aquatic plants	855.643mg/L	3
diethanolamine	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	1-480mg/L	2
	EC50	48	Crustacea	=28.8mg/L	1
	EC50	96	Algae or other aquatic plants	=2.1-2.3mg/L	1
	EC10	72	Algae or other aquatic plants	0.7mg/L	2
	NOEC	72	Algae or other aquatic plants	0.6mg/L	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
furosemide	HIGH	HIGH
diethanolamine	LOW (Half-life = 14 days)	LOW (Half-life = 0.3 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
furosemide	LOW (LogKOW = 2.03)
diethanolamine	LOW (BCF = 1)

Frusemide Injection

Issue Date: 08/05/2020 Print Date: 13/05/2020

Mobility in soil

Ingredient	Mobility
furosemide	LOW (KOC = 188.3)
diethanolamine	HIGH (KOC = 1)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

- ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- ▶ DO NOT allow wash water from cleaning or process equipment to enter drain
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

FUROSEMIDE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 4

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

DIETHANOLAMINE IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Inventory of Chemical Substances (AICS)

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -

Schedule 6

Chemical Footprint Project - Chemicals of High Concern List

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans

National Inventory Status

National inventory Status	
National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (furosemide; diethanolamine)
China - IECSC	No (furosemide)
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	No (furosemide)
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

Chemwatch: 5398-43 Page 11 of 11

Issue Date: 08/05/2020 Version No: 3.1.1.1 Print Date: 13/05/2020 Frusemide Injection

SECTION 16 OTHER INFORMATION

Revision Date	08/05/2020
Initial Date	06/05/2020

SDS Version Summary

Version	Issue Date	Sections Updated
3.1.1.1	08/05/2020	Ingredients

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit.

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.